Как принимать лейцин для роста мышц. Лейцин. Суточная норма. Недостаток лейцина. Взаимодействие с питательными веществами

BCAA - это комплекс, состоящий из трех незаменимых аминокислот – лейцина, валина, изолейцина. Данные аминокислоты являются главным строительным материалом для мышц, они необходимы для восстановления, поддержания анаболизма и подавления катаболизма. BCAA можно рассматривать в качестве топлива для мышечных тканей, которое улучшает выносливость и силовые показатели.

Из всех BCAA самым эффективным является лейцин, именно он дает сигнал для синтеза белка в мышечных тканях. Лейцин составляет 8% от всех аминокислот в организме человека.

Данная аминокислота необходима в бодибилдинге для:

  • Снижения уровня сахара в крови;
  • Обеспечения азотного баланса;
  • Предотвращения усталости;
  • Построения мускулатуры;
  • Защиты от процессов катаболизма;
  • Синтеза белков;
  • Укрепления иммунной системы;
  • Ускорения заживления ран;
  • Ускорения процессов восстановления.

Современная медицина использует лейцин в сочетании с другими аминокислотами для лечения печеночных заболеваний, анемии, мышечной дистрофии, токсикоза, повреждений нервной системы.

Лейцин в спортивном питании

Исследования показали, что наибольшую эффективность приносят те BCAA, в которых соотношения лейцина, изолейцина и валина равны 2:1:1 – именно такие пропорции характерны для животных белков (молочных продуктов, мяса).

Лейцин способен повышать эффективность других спортивных добавок, тоже самое можно сказать и про BCAA в целом. Принимать данную аминокислоту в отдельности от других BCAA нецелесообразно, так как максимальный эффект дает именно комплекс этих трех аминокислот.

Как принимать лейцин

Лейцин в бодибилдинге можно принимать в любое время дня. Опытные спортсмены рекомендуют выпивать его непосредственно перед началом силовой тренировки и сразу после ее окончания (по 3-5г за один раз). Также некоторые атлеты ощущают повышение выносливости и производительности, когда принимают лейцин во время тренинга.

Как мы уже говорили, намного эффективнее принимать лейцин в бодибилдинге совместно с изолейцином и валином. Тем более, что найти и купить лейцин в отдельности очень проблематично – так как его производят только в комплексе с остальными BCAA аминокислотами. Что касается того, как принимать BCAA, то здесь мы советуем следующие схемы.

Если вы на массонаборе:

Если вы на сушке:

  • Схема приема такая же, как и на массе, но коктейль с сахаром пить нельзя. Кроме этого, лейцин на сушке можно принимать и между приемами пищи, чтобы подавлять катаболические процессы, чувство голода и сохранять мышцы, но в большинстве случаев для этого лучше использовать протеиновые комплексы.

Что касается дозировок BCAA, то за один раз рекомендуется выпивать по 5-10г в независимости на массе вы или на сушке. Некоторые производители производят BCAA с другими соотношениями между лейцином, изолейцином и валином. Например, мы встречали таких схемы BCAA – 4:1:1, или 3:2:2. Лучше всего ориентироваться на классическую схему – 2:1:1, так такое же соотношение сохраняют белки животного происхождения.

Видео: 10 фактов о BCAA

Сиртуин

Белок сиртуин (от англ. Silent Information Regulator Transcript (SIRT) – это NAD+ зависимые ферменты, чувствительные к клеточному коэффициенту NAD + / NADH и, таким образом, к энергетическому статусу клетки. Из них SIRT1 является гистондеацетилазой, которая может изменять сигнализацию ядерных белков p53 (транскрипционный фактор, регулирующий клеточный цикл), NF-kB (ядерный фактор «каппа-би») и FOXO (транскрипционный факторы семейства forkhead box класса О) и может вызвать митохондриальный фактор биогенеза PGC-1α. Считается, что активация SIRT1 (чаще всего ресвератрол) положительно влияет на продолжительность жизни. Исследования на крысах показали, что лейцин обусловливает полезные свойства молочных белков, и это положительно сказывается на продолжительности жизни, укреплении здоровья и снижает риск преждевременной смерти . Результаты данных сыворотки крови пациентов, которые потребляли большое количество молочных продуктов, показали, что такая диета повышает активность SIRT1 на 13% (жировая ткань) и 43% (мышечная ткань). Оба метаболита лейцина (альфа-кетоизокапроновая кислота и гидроксиметилбутират моногидрат (HMB) являются активаторами SIRT1 в диапазоне 30-100%, что сравнимо с эффективностью ресвератрола (2-10мкM), но требует более высокой концентрации (0,5 мМ). Было отмечено, что митохондриальный биогенез и инкубация лейцина происходит в жировых и мышечных клетках, а разрушение SIRT1 уменьшает (но не устраняет) лейцин-индуцированный митохондриальный биогенез. Метаболиты лейцина способны стимулировать активность SIRT1, и этот механизм лежит в основе митохондриального биогенеза. Данный механизм имеет умеренную силу действия.

Взаимодействие с метаболизмом глюкозы

Усвоение глюкозы

Лейцин может способствовать активации инсулин-индуцированной протеинкиназы В (Akt), но для того чтобы сначала ослабить и ингибировать ее, необходима фосфоинозитол-3-киназа PI3K. Только так лейцин сохраняет инсулин-индуцированную активацию Akt). Так как лейцин также стимулирует секрецию инсулина из поджелудочной железы (инсулин затем активирует PI3K), в сущности это не имеет практического значения. В условиях, когда инсулин отсутствует, 2 мМ лейцина и (в меньшей степени) его метаболит α-Кетоизокапроат, видимо, способствуют поглощению глюкозы через PI3K / aPKC (атипичная протеинкиназа С ) и независимо от mTOR (блокирование MTOR не влияет на производимый эффект). В этом исследовании стимуляция составляет лишь 2-2.5мМ для 15-45 минут (сопротивление вырабатывается при 60 мин) и по силе сопоставима с физиологическими концентрациями базального инсулина, но на 50% меньшей силой (100 нМ инсулина). Этот механизм действия аналогичен механизму действия изолейцина и имеет похожую силу. Тем не менее, лейцин также может помешать клеточному всасыванию глюкозы, что, как полагают, связано с активацией передачи сигнала mTOR, который подавляет сигнализацию АМФ-зависимой киназы (AMPK) (сигнализация AMPK опосредует поглощение глюкозы в периоды низкой клеточной энергии и физических упражнений ) и действует вместе с сигнализацией mTOR, влияющей на киназу рибосомного белка S6 (S6K). Передача сигнала с помощью MTOR / S6K вызывает деградацию IRS-1 (первый белок, который несет «сигнал» инсулин-индуцированного эффекта), посредством активации протеасомной деградации IRS-1 или непосредственным связыванием с IRS-1. Это формирует негативную замкнутую систему управления с обратной связью сигнализации инсулина. Минимизирование негативных последствий для IRS-1 способствует лейцин-индуцированному всасыванию глюкозы, и эта отрицательная обратная связь объясняет, почему глюкоза всасывается в течение 45-60 минут, а затем внезапно ингибируется. Так как изолейцин не так сильно влияет на активацию mTOR и, таким образом, это путь отрицательной обратной связи, именно изолейцин обеспечивает существенное всасывание глюкозы в мышечных клетках. Изначально лейцин способствует поглощению глюкозы в мышечных клетках в течение приблизительно 45 минут, а затем процесс резко прекращается, что несколько снижает общий эффект. Это внезапное прекращение является отрицательной обратной связью, что обычно происходит после активации MTOR. Изолейцин лучше, чем лейцин, содействует поглощению глюкозы из-за меньшей активации mTOR.

Секреция инсулина

Лейцин способен индуцировать секрецию инсулина из поджелудочной железы с помощью своего метаболита КИК. Это выделение инсулина подавляется другими АРЦ и двумя подобными аминокислотами: норвалином и норлейцином. Лейцин участвует в индукции секреции инсулина либо как добавка, либо в комбинации с глюкозой (например, при приеме лейцина и глюкозы соответственно наблюдается увеличение на 170% и на 240%, а при приеме комбинации наблюдается увеличение до 450%). Несмотря на сопоставимый потенциал лейцина и йохимбина, они не сочетаются из-за их параллельных механизмов действия. Лейцин, как известно, стимулируют секрецию инсулина из поджелудочной железы и поэтому является самой сильной АРЦ. На эквимолярной основе (такой же концентрации молекулы внутри клетки), лейцин имеет примерно такую же силу, как йохимбин, и две трети потенциала глюкозы. Лейцин является положительным аллостерическим регулятором глутаматдегидрогеназы (GDH), – фермента, который может преобразовать некоторые аминокислоты в кетоглутарат (α-кетоглутарат). Это увеличивает клеточную концентрацию АТФ (по отношению к АДФ). Увеличение уровня концентрации АТФ вызывает увеличение секреции инсулина посредством механизмов, которые не зависят от активации mTOR. Метаболит KIC может подавлять KATФ каналы и вызывать колебания кальция в панкреатических бета-клетках. Выделение кальция может также воздействовать на mTOR (стандартная цель лейцина), а активация mTOR может подавлять экспрессию α2A рецепторов. Так как α2A рецепторы подавляют секрецию инсулина при активации , а избыточная экспрессия индуцирует диабет, меньшая экспрессия этих рецепторов вызывает относительное увеличение секреции инсулина. Такой путь, вероятно, наиболее важный с практической точки зрения, так как mTOR антагонист рапамицина может отменить лейцин-индуцированную секрецию инсулина и подавить саму секрецию инсулина. Чтобы стимулировать секрецию инсулина из панкреатических бета-клеток, лейцин работает двумя путями, основным из которых является уменьшение влияния негативного регулятора (2а-рецепторов). Снижение влияния отрицательного регулятора вызывает не поддающееся лечению увеличение активности.

Лейцин в бодибилдинге

Синтез белка

Основной механизм действия лейцина – это стимуляция активности mTOR , а затем – стимуляция активности киназы p70S6 через PDK1 . Киназа p70S6 затем положительно регулирует синтез протеина. Кроме того, лейцин способен индуцировать активность эукариотического фактора инициации (eIF, в частности, eIF4E) и подавляет его ингибирующий связывающий белок (4E-BP1), который повышает трансляцию белка , что было подтверждено после перорального приема лейцина. Модуляция eIF, таким образом, усиливает синтез белка мышц, вызванный киназой p70S6. Активация mTOR – это общеизвестный анаболический путь, действие которого связанно с выполнением физических упражнений (активация с 1-2 часовой задержкой по времени), инсулином и избытком калорий. Как и другие АРЦ, но в отличие от инсулина, лейцин не стимулирует активность протеинкиназы В (Akt / РКВ), которая происходит между рецептором инсулина и mTOR, (Akt и протеинкиназа B / PKB являются взаимозаменяемыми терминами). Akt способен усиливать eIF2B, что также положительно способствует синтезу белка в мышцах, вызванному киназой p70S6 и, судя по недостаточной активации Akt с помощью лейцина, является теоретически не такой сильной, как если бы сигнализация Akt активировалась так же, как инсулин. Активация mTOR с помощью лейцина в организме человека была подтверждена после перорального приема добавок, а также активации киназы p70S6K. Исследования активации Akt не смогли выявить каких-либо изменений в функциональности человеческих мышц, и это подразумевает, что высвобождение инсулина из поджелудочной железы, вызванное лейцином (данный процесс происходит в организме человека , а активация Akt происходит с помощью инсулина), не могут быть актуальны. Лейцин способен стимулировать активность mTOR и его последующую сигнализацию синтеза белка. Хотя Akt / PKB положительно влияет на активность mTOR (поэтому, когда активирована Akt, она активизирует mTOR), лейцин может воздействовать другим путем и активизирует mTOR, не влияя на Akt. Несмотря на это, все, что активизирует mTOR, будет также влиять на киназу p70S6, а затем и на синтез белка в мышцах. Этот анаболический эффект лейцина имеет большее влияние на скелетные мышцы, чем на ткань печени ; физические упражнения (мышечные сокращения) дополняют его полезное воздействие. Согласно некоторым исследованиям, прием лейцина перед тренировкой является более эффективным, чем прием в другое время (для резкого увеличения синтеза белка). Лейцин – наиболее сильная из всех аминокислот в стимулировании синтеза мышечного белка.

Атрофия / Катаболизм

Лейцин, как известно, способствуют синтезу белка мышц при низких концентрациях в лабораторных условиях, при приеме в более высоких концентрациях лейцин может ослабить атрофию мышц, даже несмотря на остановку скорости синтеза. Этот эффект сохраняется в мышцах и был отмечен при болезнях, оказывающих негативное влияние на мышцы, таких как рак, а также сепсис, ожоги и травмы. В этих случаях преимущества приема зависят от дозы.

Гипераминоацидемия

Гипераминоацидемия – это термин, используемый для обозначения избытка (гипер) аминокислот в крови (-emia), аналогично этому, гиперлейцинемия означает избыток лейцина. Исследования показали, что у пожилых людей лейцин увеличивает синтез мышечного белка независимо от гипераминоацидемии.

Саркопения

Саркопения характеризуется снижением содержания белка и увеличением содержания жира в скелетных мышцах, которое происходит с возрастом. Одной из причин возникновения саркопении является уменьшение метаболической реакции на сохранение мышечного эффекта L-лейцина, что возникает с клеточным старением. Негативное воздействие этого эффекта можно минимизировать путем добавления L-лейцина к продуктам, содержащим белок.

Взаимодействие с питательными веществами

Карбогидрат (углевод)

Когда рецептор инсулина активирован, он может активировать mTOR косвенно через Akt. В то время как Akt положительно влияет на синтез белка, вызванный киназой S6K1 (которая активируется во время активации mTOR), добавка лейцина напрямую не влияет на активацию Akt, как это делает инсулин в лабораторных условиях. Было отмечено, что инфузия лейцина у людей существенно не влияет на активацию Akt в скелетных мышцах, т.е., секреция инсулина, индуцированная лейцином, недостаточна для стимулирования Akt. Лейцин взаимодействует с усвоенной глюкозой и снижает уровень глюкозы в крови и затем влияет на секрецию инсулина из поджелудочной железы. Интересно, что лейцин не сочетается с йохимбином в индукции секреции инсулина из-за параллельных механизмов действия. Лейцин взаимодействует с пищевыми углеводами и влияет на активность секреции инсулина из поджелудочной железы, а также взаимодействует с инсулином, что влияет на синтез мышечного белка.

Ресвератрол

Ресвератрол – фенольное вещество, которое, как известно, взаимодействует с сиртуином (главным образом с SIRT1), который идентичен лейцину. Метаболиты KIC и НМВ массой в 0,5 мМ могут индуцировать SIRT1 в 30-100% от исходного уровня, который сопоставим с активностью ресвератрола в 2-10 мкм. Это несмотря на то, что комбинация лейцина (0,5 мМ) или HMB (0,5 мкм) и ресвератрола (200 нм) способна синергически индуцировать активность SIRT1 и SIRT3 в адипоцитах (жировых клетках) и скелетных мышечных клетках . KIC - это более мощный стимулятор, чем HMB, и лучше взаимодействует с лейцином, чем с HMB (возможно, это указывает на метаболизм KIC). Когда крысам дают смесь лейцина (24 г / кг, до 200% главной диеты) или HMB (2 или 10 г / кг) с ресвератролом (12,5 или 225 мг / кг), а затем умерщвляют натощак, наблюдается уменьшение жировой массы и веса тела, также синергично. Было отмечено, что инкубация ресвератрола с лейцином или HMB фактически увеличивает активность АМФ-зависимой киназы (42-55%, соответственно) и способствует небольшому (18%) увеличению окисления жиров, несмотря на инкубацию 5 мкм глюкозы. Взаимодействие ресвератрола и лейцина (в состоянии инкубации или при приеме внутрь) посредством активации SIRT1 положительно влияет на митохондриальный биогенез.

Цитруллин

Цитруллин может восстанавливать скорость синтеза мышечного белка и мышечную функцию в процессе старения и плохого питания у крыс, что опосредуется через путь mTORC1 и разрушается ингибитором mTORC1, известным как рапамицин). Не удалось значительно изменить скорость окисления лейцина или синтеза белка организма человека с помощью добавки 0,18 г / кг цитруллина в течение недели, но в других случаях та же доза улучшает баланс азота в организме человека в сытом состоянии. Причина такого расхождения неизвестна. Существует не так уж много доказательств прямого активирующего воздействия цитруллина на mTOR, но он слабо индуцирует белки после активации mTOR (в том числе 4E-BP1) до уровня ниже лейцина. Клинически пока не доказано то, что цитруллин повышает сигнализацию mTOR, поскольку его преимущество зависит от mTOR, и в этом случае цитруллин должен быть синергичен с лейцином. Цитруллин может передавать сигналы лейцина через mTOR, что даёт основания предположить, что они синергичны. Еще не исследован эффект от применения этой смеси тяжелоатлетами, так что синергизм в настоящее время – это только неподтвержденная гипотеза.

Безопасность и токсичность

В небольшом исследовании, в котором 5 здоровых человек ступенчато принимали до 1,250 мг/кг лейцина (что в 25 раз превышает ожидаемую среднюю потребность организма в лейцине), было отмечено, что пероральный прием дозы в 500-1,250 мг вызывал увеличение в сыворотке аммиака, из-за чего верхний ограничительный порог был установлен на уровне в 500 мг / кг (для человека весом в 150 фунтов (68 кг) - 34 г) .

Пищевая добавка

Как пищевая добавка, L-лейцин имеет Е номер E641 и классифицируется как усилитель вкуса.

Доступность:

Список использованной литературы:

Nutr Metab (Lond). 2012 Aug 22;9(1):77. doi: 10.1186/1743-7075-9-77. Synergistic effects of leucine and resveratrol on insulin sensitivity and fat metabolism in adipocytes and mice. Bruckbauer A1, Zemel MB , Thorpe T, Akula MR, Stuckey AC, Osborne D, Martin EB, Kennel S, Wall JS.

Yeh YY. Ketone body synthesis from leucine by adipose tissue from different sites in the rat. Arch Biochem Biophys. (1984)

Van Koevering M, Nissen S. Oxidation of leucine and alpha-ketoisocaproate to beta-hydroxy-beta-methylbutyrate in vivo. Am J Physiol. (1992)

Dann SG, Selvaraj A, Thomas G. mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol Med. (2007)

Nobukuni T, et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci U S A. (2005)

Greiwe JS, et al. Leucine and insulin activate p70 S6 kinase through different pathways in human skeletal muscle. Am J Physiol Endocrinol Metab. (2001)

Hannan KM, Thomas G, Pearson RB. Activation of S6K1 (p70 ribosomal protein S6 kinase 1) requires an initial calcium-dependent priming event involving formation of a high-molecular-mass signalling complex. Biochem J. (2003)

Mercan F, et al. Novel role for SHP-2 in nutrient-responsive control of S6 kinase 1 signaling. Mol Cell Biol. (2013)

Fornaro M, et al. SHP-2 activates signaling of the nuclear factor of activated T cells to promote skeletal muscle growth. J Cell Biol. (2006)

Inoki K, et al. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. (2003)

Существуют доказательства, что хронические болезни цивилизации связаны с гиперактивацией mTORС, такие как акне, ожирение, диабет 2-го типа, артериальная гипертензия, болезнь Альцгеймера, рак, в особенности рак простаты. Сегодня мы начнем разговор про «быстрые» аминокислоты, которые значительно стимулируют mTORС. Это аминокислоты с разветвленной цепью, в первую очередь лейцин, расскажу про его светлую и темную сторону. Про метионин уже было: .









Простое объяснение про mTOR.

В клетках нашего организма есть молекулярный комплекс, который управляет активностью клетки. Его активность важна для роста организма и отдельных его тканей (наращивание мышц). Но после 25 лет рост человека заканчивается и излишняя активность этого комплекса mTOR заставляет расти вредные, болезненно измененные клетки (атеросклеротические бляшки, жир, раковые клетки и др.). Если человек активно занимается спортом и подвергается большим нагрузкам, то он может себе безопасно позволить большую активность mTOR.

Представьте себе, что наша жизнь – это езда на автомобиле. Если вы тупо будете давить на газ все время, то скоро попадете в аварию. Для долгой и безопасной езды нужно притормаживать, останавливаться, пропускать другие машины. Т.е. для наших клеток нужно периоды неактивного mTOR, чтобы наши клетки могли восстанавливаться. Постоянная стимуляция и рост приводят к тому, что наши клетки становятся «замусоренными» и теряют чувствительность к сигналам организма, что приводит к проблемам.

Продукты питания имеют разное влияние на активность mTOR. Есть нейтральные продукты, которые стимулируют mTOR пропорционально числу калорий, а есть «быстрые» продукты, которые стимулирую mTOR намного сильнее. Если человек растет или физически активен значительную часть дня, то особого вреда для него нет. Но если человек имеет меньшую физическую активность, то эти продукты будут приводить к росту mTOR-зависимых болезней, про которые я говорил раньше.

В связи с этим, постоянно увеличивающееся сигнализирование mTORС1 признано основной движущей силой развития mTORС1-зависимых болезней цивилизации. Клетка реагирует на многие стимулы (факторы роста, питательные вещества, гормоны и др.), в итоге активируется ферментный комплекс mTOR. Считается, что его хроническая, неизвестно откуда взявшаяся активация способствует зарождению и прогрессированию ряда заболеваний, таких как аутизм, болезнь Альцгеймера, паркинсонизм и рак. Сейчас в серии постов я расскажу про основные пути активации mTOR, сегодня речь пойдет про белки и аминокислоты. И вы увидите, что разделение белков на «животные» и «растительные» не совсем правильно с точки зрения молекулярной биологии. Так, соевый и пшеничный белок – это тоже «быстрые» продукты, которые значительно стимулируют mTOR.

Основные пути активации (не все!).

1. Гормоны и факторы роста: тестостерон, орексин, инсулин, ИФР-1 и др.



3. Физические упражнения. mTOR активируется в мозгe, мышцах и сердце, ингибируется в печени и жировых клетках, что несет пользу для организма.

4. Воспаление (избыток омега-6 жирных кислот, нарушенная микрофлора и др.)

5. Определенные вещества, например фосфорная кислота. Важно уменьшить потребление и создание в организме ортофосфорной кислоты (Ортофосфорная кислота зарегистрирована в качестве пищевой добавки E338. Применяется как регулятор кислотности в газированных напитках, например в Кока-Коле)

Быстрые продукты: молоко.

Быстрые продукты содержат нутриенты, которые максимально сильно стимулируют mTOR pазными механизмами: через глюкозу, через ИФР-1, через режим кормления (Чем чаще ест, тем сильнее вырабатывается ИФР-1 даже при одинаковом числе калорий), через действие лейцина и множеством других механизмов. Классическим быстрым продуктом является молоко и продукты из него (сыр, творог, сухое молоко и др.), потребление которых растет невероятно быстро. Более того, сухое молоко добавляется во множество других продуктов, от батончиков и хлеба, до быстрых каш и диетического питания. Все молочные продукты вызывают высокий подъем инсулина, ИФР-1, стимулируют mTOR напрямую через высокое содержание лейцина и метионина.

Молоко это не просто еда, но очевидно представляет собой сложнейшую эндокринную систему сигналов, активирующую mTORС1 через специальные материнские, получаемые из молока передатчики, которые контролируются лактационным геномом млекопитающих: производимых молочными железами BCAAs молочных белков и экзосомальных miRs, которые приводят к увеличению сигналов mTORС1 для послеродового роста.

Коровье молоко - это чрезвычайно мощная эволюционная программа быстрого роста вида Bos Taurus (домашняя корова), которая может перманентно индуцировать чрезмерную стимуляцию mTORC1 у людей, употребляющих молоко. Более того, увеличение веса теленка в течение первого года кормления коровьим молоком (0.7 – 0.8 кг в день) – это почти в 40 раз быстрее, чем у грудных человеческих младенцев (0.2 кг в день)

Это вкусно.

Почему эти продукты настолько популярны? Очень просто – нашему мозгу они кажутся вкусными (равно как и сахар, жир, соль). Система рецепции незаменимых аминокислот (обнаружение дефицита или избытка) находится в головном мозге. Здесь происходит формирование сигналов последующего пищевого поведения, выражающегося в предпочтительном поедании сбалансированных кормов или развития стойкого отвращения к диете с дефицитом или имбалансом с последующей адаптацией и повышением потребления корма, или -невозможность адаптации, в зависимости от остроты имбаланса незаменимых аминокислот.

Существуют экспериментальные доказательства того, что в этих реакциях главную роль играет передняя кора грушевидной доли (КГД-anterior piriform cortex - APC) головного мозга. Здесь происходит интеграция сигналов дефицита незаменимых аминокислот. К настоящему времени известно, что протеин-киназы являются необходимыми передатчиками сигнальных импульсов в нервной системе и формирования рефлексов.

Поскольку имбаланс диет по аминокислотам приводит к устойчивому отвращению к пище, предполагается, что фосфорилирование определённых белков при помощи протеинкиназ может играть важную роль в возникновении аноректической реакции. Именно поэтому «быстрые продукты» кажутся вкуснее. Но в природе они есть лишь у матери (молоко) или в ограниченном количестве (яйца).

Установлено, что аминокислоты с разветвлёнными цепями (АКРЦ) -лейцин, изолейцин и валин стимулируют синтез белка в скелетных мышцах с такой же эффективностью, как и полная смесь всех аминокислот. Это явление привлекло широкое внимание представителей спортивной медицины, так как позволяет управлять мышечной массой спортсменов. Действия лейцина осуществляется через протеин-киназу mTOR.

Самая быстрая аминокислота – лейцин.

Лейцин (сокр. Leu или L; 2-амино-4-метилпентановая кислота; от греч. leukos — «белый»), входит в состав всех природных белков. Лейцин является одной из незаменимых аминокислот, которая не синтезируется клетками организма, поэтому поступает в организм исключительно в составе белков натуральной пищи. Отсутствие или нехватка лейцина в организме может привести к нарушениям обмена веществ, остановке роста и развития, снижению массы тела. Лейцин не может производиться организмом и должен поступать с пищей или пищевыми добавками. Его можно найти в молочных продуктах, мясе, пшенице, бобовых, орехах, коричневом рисе и продуктах из цельного зерна. Лейцин составляет около восьми процентов всех аминокислот в организме и это четвертая аминокислота по концентрации в мышечных тканях.

Лецин обладает уникальным свойством напрямую стимулировать активность mTOR. Кроме того, лейцин стимулирует выделение инсулина и ИФР-1, которые также стимулируют mTOR. Что интересно, лейцин оказывает гораздо большее воздействие на синтез белка по сравнению с любой другой аминокислотой.

Одним из наиболее изученных путей мышечного роста считается серин/треониновая протеинкиназа mTOR (мишень рапамицина у млекопитающих), с помощью которой лейцин активизирует сложные пути формирования мышц. Следует отметить, что mTOR весьма чувствителен к концентрации лейцина. Лейцин оказывает приблизительно в 10 раз большее влияние на образование новых белков, чем любая другая аминокислота!

Белая сторона лейцина.

Активация mTOR в мышцах – это важный фактор мышечного роста. Поэтому многие атлеты рекомендуют стиль питания «сосунка» - новорожденного ребенка: жидкая пища, молоко и его производные (такие как сывороточный белок), много сахара и частые приемы пищи. Безусловно, все это помогает активации mTOR. Но хочу обратить внимание, что главным для роста мышц является избирательное стимулирование mTOR (только в мышцах). Когда вы занимаетесь спортом, то mTOR стимулируется механическим фактором роста, который выделяется в мышцах и mTOR там же и действует.

Научно доказано, что сами по себе тренировки с отягощениями способны повысить уровень белкового синтеза на 40%. При использовании лейцина эта цифра возрастает до 50%. Рост и стимуляция мышц достаточны при активации механического фактора роста. Участие mTOR, конечно, добавляет эффект но только если вы реально «растете». А вот пищевая стимуляция лейцина увеличивает активность mTOR во всем организме и растет все: от атеросклеротических бляшек до прыщей. Конечно, в кратковременной стимуляции проблемы нет, важен баланс, я уже об этом писал.

Несмотря на то, что это, возможно, приводит к образованию более сухой массы в течение некоторого периода времени, лейцин также демонстрирует эффективность в увеличении мышечной массы у людей с низким потреблением белка и у пожилых людей (у которых, как правило, нарушен синтез мышечного белка в результате лечебной диеты).

Воздействие лейцина на глюкозу до конца не выяснено. Лейцин обладает свойством снижать уровень сахара в крови (может выделять инсулин из поджелудочной железы, а также непосредственно стимулировать поглощение глюкозы клеткой без инсулина), но также имеет и противоположные свойства (ингибирует стимулируемое инсулином усвоение глюкозы, с помощью стимуляции киназы рибосомного белка S6). В культуре клеток лейцин стимулирует поглощение глюкозы до 45 минут. В живых системах воздействие небольших доз лейцина незначительно (по предварительным данным, лейцин обладает реабилитационными свойствами при сахарном диабете).

Кроме того, лейцин является эффективным вспомогательным средством, повышающим работоспособность человека во время различных диет. Приём лейцина и других BCAA аминокислот помогает спортсменам уменьшать жировые отложения, увеличивать мышечную массу, повышать выносливость и улучшать качество выполняемых упражнений во время тренировок

Немного биохимии . Как уже звучало, основной механизм действия лейцина – это активация мишени рапамицина (TOR), которая упоминается как «мишень рапамицина в клетках млекопитающих» (в частности, лейцин активизирует mTORC1, - одну из подгрупп комплекса). Первый внутриклеточный мультимолекулярный сигнальный комплекс (mTORC1) состоит из нескольких белков: сам TOR, наряду с raptor (англ. regulatory-associated protein of TOR), белка GβL и PRAS40 (англ. proline-rich PKB/AKT substrate 40 kDa)). Этот комплекс активируется добавкой лейцина.

Инкубация клетки с помощью лейцина активирует mTOR без активации протеинкиназы В, и это воздействие идентично общему увеличению содержания внутриклеточного кальция. Интересно, что лейцин, видимо, индуцирует активность mTOR посредством увеличения внутриклеточного кальция, так как увеличение кальция и связывание кальмодулина (белка, участвующего в гомеостазе кальция) с hVPS34 принципиально важно для лейцин-индуцированной активации mTOR.

Белок SHP-2 (тирозин фосфатазы) имеет решающее значение для синтеза мышечного белка и, как известно, ограничивает рост мышц в периоды питательной депривации. Он подает сигнал киназе рибосомного белка S6 (S6K1) посредством мобилизации внутриклеточного кальция в наивысшей точке фосфолипазы C гамма-4 и работает с помощью белка Rheb, который стимулирует mTOR. Белки Rheb, как известно, являются положительными модуляторами функций mTOR. Лейцин и/или его метаболиты увеличивают внутриклеточный кальций, что похоже на мышечные сокращения.

Увеличение кальция, в свою очередь, активирует белки типа mTOR, которые затем индуцируют синтез протеина в мышцах. В отличие от мышечных сокращений, данный процесс происходит во всех клетках и не только в скелетных мышцах. Другими словами, процесс происходит таким образом: SHP-2 (в настоящее время – самый дальний белок в цепи) → мобилизация кальция → связывание hVPS34 с кальмодулином → активация mTORC1 (возможно, с помощью Rheb) → активация S6K1 → синтез мышечного белка

Черная сторона лейцина.

Важно понять, что гиперстимуляция mTORC вызывается не одним лейцином, а комплеком проблем (гиперкалорийность, избыток сахара, общий избыток белка, избыток омега-6, постоянные перекусы и др.). Особенность западной диеты заключается в том, что мы едим просто невероятные количества лейцина как с животной, так и с растительной пищей. Главные источники лейцина: мясо, молочные продукты (включая сыр), бобовые (соя), пшеница, арахис. Знакомо? Зачастую питание многих людей и состоит из мяса, злаков и молочки.

При постоянной стимуляции роста и активности mTORC клетки перестают ремонтировать себя, нарушается процесс аутофагии. Оказалось, что аминокислота метионин, а также аминокислоты БЦАА (лейцин, изолейцин и валин) стимулируют активность сигнального белка — киназы mTOR. Активность белка киназы mTOR сокращает продолжительность жизни из-за того, что этот белок активизирует процессы синтеза новых белков в оргазме в ущерб «утилизации» старых, которые просто засоряют клетку. Повышенное содержание старых повреждённых белков приводит к ускоренному старению клеток организма.

Кроме того, как я уже писал выше, при пищевой стимуляции идет стимуляция mTORC везде, включая жировые клетки. Так, лейцин - это самый сильный стимулятор накопления жира в жировых клетках (рисунок ниже).

Постоянная чрезмерная стимуляция mTORС1 способствует появлению хронических болезней цивилизации. Эпидемические акне это видимый индикатор избытка mTORС1, сигнализирующий об увеличении риска следующих болезней цивилизации: раннее половое созревание, раннее появление акне, чрезмерная угревая сыпь (акне), ожирение, диабет 2 типа, рак, нейродегенерация.

До недавнего времени между употреблением молока и молочных продуктов и патогенезом акне признавалась довольно слабая связь, но сейчас, однако, есть существенные эпидемиологические и биохимические доказательства, подтверждающие воздействие молока и молочных продуктов на увеличение insulin-/IGF-1 и усугубление акне.

В связи с этим, страшно осознавать, что более чем 85% подростков западных стран демонстрируют акне, тогда как представители незападного населения, например Китавы, не подвержены влиянию этого заболевания и других mTORC1-зависимых болезней цивилизации. Это предполагает, что большая часть населения Запада живет с излишне активированными сигналами mTORC1, главным патогенным фактором, который, вероятно, может подготовить почву для развития других более серьезных болезней цивилизации. Это открытие приводит к выводу, что акне может быть показателем увеличения риска заболеть раком груди.

Дерматологам, консультирующим пациентов с проблемой акне, особенно молодых, следует не только обращать внимание на лечение кожных патологий, но и консультировать о способах скорректировать несвойственную mTORC1-стимуляцию, усугубляемую западной диетой. Это необходимо, чтобы предупредить более серьезные mTORC1-зависимые болезни цивилизации, такие как ожирение, диабет и рак. Комплексная диетическая стратегия для лечения акне может быть достигнута только путем увеличения потребления овощей и фруктов, и снижением количества пищи животного происхождения.

Исследование проводилось в США под руководством Вальтера Лонго. Результаты исследования показаны в 2014 году. Так среди людей от 50 до 65 лет регулярное употребление в пищу большого объёма коровьего молока и молочных продуктов приводило к росту общей смертности и росту опухолевых заболеваний.

Ограничение продуктов, богатых лейцин, оказывает действие, равносильное лечебному голоданию и на низкокалорийной питание, и срок жизни их вырастал. Но другую группу дрозофил также сажали на низкокалорийное питание, но при этом в их питание добавляли аминокислоты БЦАА, либо одну аминокислоту метионин. У таких дрозофил продления жизни не наблюдалось. Было обнаружено, что не низкое потребление калорий вызывает продление жизни, а более низкое потребление сахаросодержащих продуктов + более низкое потребление БЦАА аминокислот и метионина. В последствии эти же результаты подтвердились и на млекопитающих. Метионин и БЦАА — это аминокислоты, которые входят в состав, прежде всего животного белка. Особенно много его в коровьем молоке и молочных продуктах.

Лейцин (сокр. Leu или L) представляет собой незаменимую алифатическую аминокислоту с разветвлённой цепочкой. По своему объёму лейцин – одна из самых крупных аминокислот. Входит в состав BCAA аминокислот .

Лейцин является основной составляющей всех природных белков, принимает активное участие в синтезе и распаде протеина . В человеческом организме лейцин в существенных количествах содержится в поджелудочной железе, печени, почках, селезёнке, в мышечных клетках и тканях, а также в составе белков сыворотки крови.

Лейцин является одной из незаменимых аминокислот , которая не синтезируется клетками организма, поэтому поступает в организм исключительно в составе белков натуральной пищи. Отсутствие или нехватка лейцина в организме может привести к нарушениям обмена веществ, остановке роста и развития, снижению массы тела.

Пищевые источники лейцина: данная аминокислота содержится в лесных орехах, бобах, соевой муке, коричневом рисе, яичных белках, мясе (филе говядины, лосось, куриные грудки) и цельной пшенице.

В зависимости от образа жизни, уровня нагрузок и других факторов, потребность человеческого организма в лейцине составляет от 6 до 15 г в сутки.

Биологическая роль лейцина

  • снижает уровень сахара в крови;
  • обеспечивает азотистый баланс, необходимый для процесса обмена белков и углеводов;
  • предотвращает появление усталости, связанное с перепроизводством серотонина;
  • необходим для построения и нормального развития мышечных тканей;
  • защищает клетки и ткани мышц от постоянного распада;
  • является специфическим источником энергии на клеточном уровне;
  • участвует в синтезе протеина;
  • укрепляет иммунную систему;
  • способствует быстрому заживлению ран.

Применение

Сегодня лейцин в сочетании с глутаминовой кислотой, метионином и другими аминокислотами активно используется для лечения болезней печени, анемии, мышечной дистрофии, некоторых форм токсикоза, а также при некоторых заболеваниях нервной системы и синдроме Менкеса.

Лейцин и спортивное питание

Лейцин относится к так называемым «BCAA аминокислотам»(изолейцин, лейцин и валин). Многочисленные исследования доказали, что из всех BCAA лейцин является самой эффективной аминокислотой. Именно подъём уровня этого вещества после приёма пищи выступает определённым сигналом к синтезу белков в мышечных клетках.

Существуют научные доказательства того, что приём BCAA аминокислот снижает уровень расщепления мышечного белка у спортсменов во время тренировок, а лейцин, при этом, оказывает мощное влияние на анаболизм в скелетных мышцах. Кроме того, имеются данные о том, что BCAA ослабляют мышечное утомление после тренировок и избавляют от синдрома отставленной мышечной болезненности, т.е. способствуют и помогают восстановлению организма после изнурительных занятий в спортзале.

Регулирование уровня глюкозы

Распад лейцина в скелетной мышце приводит к образованию глутамина и аланина – аминокислот, являющихся важными элементами в процессе поддержания уровня глюкозы в организме.

Благодаря достаточно продолжительному циклу (аланин-пируват-глюкоза-пируват-аланин) в организме образуется печёночная глюкоза, и поддерживается необходимое равновесие уровня глюкозы. В данном процессе лейцин является чем-то вроде исходного материала для образования глюкозы в печени.

Значимость этого факта заключается в том, что с помощью лейцина человек может легко воспользоваться любой низко углеводной диетой в целях поддержания здорового уровня глюкозы в крови.

Лейцин и спортивные диеты

Обладает способностью сжигать глюкозу путём стимулирования процесса в цикле глюкоза – аланин. Благодаря чему, в организме поддерживается стабильный уровень сахара, и сохраняется необходимая мышечная масса в условиях низкокалорийной диеты.

К тому же, лейцин совместно с инсулином позволяет мышцам согласовывать синтез протеина. На схемах, приведённых ниже, можно проследить весь процесс действия и сравнить конечный результат:

Получается, что лейцин и другие BCAA заставляют организм выделять серин и треонин, создающие фосфорилирующий поток, который в итоге активирует трансляцию синтеза протеина, отвечающего за рост мышц.

Выводы

Итак, лейцин является эффективным вспомогательным средством, повышающим работоспособность человека во время различных диет. Приём лейцина и других BCAA аминокислот помогает спортсменам уменьшать жировые отложения, увеличивать мышечную массу, повышать выносливость и улучшать качество выполняемых упражнений во время тренировок.

Инструкция

Незаменимая аминокислота поступает в организм человека с едой и специальными добавками. Этот порошок, не имеющий цвета и запаха, практически не растворяется в воде, но хорошо усваивается в щелочной или кислотной среде. Вещество входит в состав многих спортивных добавок, используется в бодибилдинге.

Наименование

Латинское название

Наименование аминокислоты на латинском языке — Leucine.

Химическое название

Эта алифатическая аминокислота с разветвленными боковыми цепочками имеет название 2-амино-4-метилпентановая кислота.

Состав и форма выпуска

Добавка выпускается в виде таблеток белого или желтоватого цвета, имеющих цилиндрическую форму. Также существуют растворы для введения инъекций. Основной действующий ингредиент — L-лейцин. В 1 таблетке содержится 100 мг этого вещества. Дополнительные компоненты:

  • метилцеллюлоза;
  • стеарат кальция;
  • лактоза;
  • коллоидный диоксид кремния;
  • стеариновая кислота.

Фармакологическое действие

Фармакодинамика

Этот мощный анаболик принимает активное участие в синтезе аминокислот и метаболитов. С помощью этого связующего элемента в организме происходит синтез мышечных белков и эндогенных биорегуляторов. Аминокислота способствует поддержанию необходимого уровня глюкозы, вырабатываемой в печени. Она поддерживает мышцы после усиленных физических нагрузок, уменьшая выраженность катаболических процессов.

Элемент повышает уровень внутриклеточного кальция, что вызывает мышечные сокращения. Вещество улучшает регенерацию всех тканей, служит прекрасным иммуномодулятором. Оно не способствует активации протеинкиназы.

Фармакокинетика

L-лейцин быстро всасывается в желудочно-кишечном тракте. Здесь вещество метаболизируется. В это время при участии трикарбоновых кислот начинается синтез незаменимых жирных кислот. Благодаря этим химическим реакциям элемент полностью усваивается. При наличии достаточного количества вещества в организме вырабатываются такие важные составляющие, как аланин, глутамин, стероиды, холестерин.

Образованный при участии вещества лептин улучшает расщепление жиров. С его помощью вырабатывается инсулин. Вещество способствует образованию гормона серотонина, повышающего выносливость. При нагревании образуется уксусный ангидрид.

Для чего нужен лейцин?

Вещество укрепляет иммунную систему, препятствует ожирению, помогает избавиться от целлюлита. Используется оно и в лечебных целях. Основные показания к его применению:

  • заболевания печени;
  • полиомиелит;
  • дегенеративные изменения мышечной ткани, мышечная дистрофия;
  • анемия;
  • неврит;
  • болезнь Менкеса;
  • различные иммунные нарушения, иммунодефицит;
  • онкология.

Препарат часто назначается послеоперационным больным, а также пациентам, проходящим курс химиотерапии или лечения антибиотиками. Он восстанавливает мышечную и костную ткани после пережитой спортивной травмы. Вещество помогает быстро избавиться от лишнего веса.

Противопоказания

Запрещается принимать препараты людям, у которых имеется аллергия на это вещество. В список основных противопоказаний входят заболевания:

  • лейциноз;
  • изовалератацидемия.

При наличии этих нарушений людям нельзя употреблять любые продукты и пищевые добавки с содержанием гидрофобных аминокислот, к которым относится лейцин. Препараты на основе аминокислоты не назначаются во время беременности и в период лактации. Не рекомендуется принимать добавку детям до 18 лет.

Способ применения и дозировка лейцина

Минимальная суточная норма потребления вещества — 10 г. В ежедневном рационе человека должны присутствовать продукты, содержащие в себе это вещество. Для восполнения дефицита аминокислоты используются добавки.

Люди, усиленно занимающиеся спортом, могут принимать по 5 г вещества 2 раза в день. Больным перед предстоящей операцией разрешается принимать 200 мг средства в день в качестве общеукрепляющей терапии. Людям, страдающим последствиями химиотерапии, рекомендуется употреблять 150 мг вещества в день. Восстановить иммунитет можно, принимая по 100 мг лейцина в сутки.

Почему при заболеваниях почек могут назначить лейцин?

При недостатке элемента может нарушаться нормальная работа почек. Все это сопровождается повышением коэффициента фенилаланина. По этой причине добавка используется при лечении некоторых заболеваний почек, почечной недостаточности.

Побочные действия

Побочные симптомы после приема добавки возникают достаточно редко. К ним относятся:

  • аллергические высыпания на коже;

Передозировка

При чрезмерном потреблении повышенных доз аминокислоты могут возникнуть следующие проблемы:

  • нарушение нормального функционирования печени;
  • гипогликемия;
  • аллергическая реакция в виде сыпи, крапивницы;
  • повышенная концентрация аммиака в плазме;
  • переутомление, снижение моторных функций.

Особые указания

При беременности и лактации

Во время беременности и кормления грудью запрещается принимать препарат. Только в редких случаях врач может выписать добавку.

Можно ли в детском возрасте?

Специалисты не советуют использовать препарат до 18 лет.

При нарушениях функции почек

Люди, страдающие заболеваниями почек, должны придерживаться высокобелковой диеты. Однако в этом случае необходимо избегать передозировки, которая может еще больше усугубить ситуацию.

При нарушениях функции печени

Избыток аминокислоты может оказать негативное влияние на состояние органа. В печени происходит переработка белков, во время метаболизма выделяется аммиак, обладающий высокой токсичностью.

Влияние на концентрацию внимания

Необходимо контролировать дозировку препарата, так как переизбыток аминокислоты приводит к снижению психомоторных функций, повышая утомляемость организма.

В каких продуктах содержится лейцин?

Большое количество аминокислоты содержится в молоке и молочных продуктах. Это вещество содержится в злаковых, бобовых, буром рисе, орехах, семечках, хлебе.

Лекарственное взаимодействие

С другими препаратами

Вместе с изолейцином и валином вещество входит в состав добавки BCAA. Этот препарат способствует повышению синтеза протеина. Он широко используется в спортивном питании, применяется в бодибилдинге и тяжелой атлетике. Лекарственного взаимодействия с другими препаратами не выявлено.

Совместимость с алкоголем

Алкоголь препятствует нормальному усвоению препарата. Препарат не совмещается с метанолом и этанолом. Поэтому принимать алкогольные напитки не рекомендуется.

Условия и сроки хранения

Хранить добавку необходимо в соответствии с инструкцией, указанной на упаковке. Таблетки следует держать в темном, сухом, прохладном, труднодоступном для детей месте. Срок годности — 2 года.

Условия отпуска из аптек

Продают ли без рецепта?

Аминокислота отпускается без рецепта. Исключение составляют специальные многосоставные препараты для парентерального введения.

Сколько стоит?

Стоимость препаратов различается. Все зависит от формы выпуска и фирмы-производителя. Средняя стоимость лекарственного средства — 300-500 рублей. Цена спортивной добавки — 1000-1500 рублей.

Аналоги

Вещество входит в состав следующих препаратов:

  1. Гепасол-Нео.
  2. Инфезол.
  3. Аминовен.
  4. Нефротект.
  5. Аминоплазмаль.


Top