Изометрическое сокращение мышц. Механизм и виды мышечных сокращений. по дисциплине: "Физиология человека"

Теория и методика подтягиваний (части 1-3) Кожуркин А. Н.

2.1 ФОРМЫ И ТИПЫ МЫШЕЧНОГО СОКРАЩЕНИЯ.

2.1 ФОРМЫ И ТИПЫ МЫШЕЧНОГО СОКРАЩЕНИЯ.

Сокращение скелетных мышц возникает в ответ на нервные импульсы, идущие от специальных нервных клеток - мотонейронов. В процессе сокращения в мышечных волокнах возникает напряжение. Напряжение, развиваемое при сокращении, реализуется мышцами по-разному, что и определяет различные формы и типы мышечного сокращения. Классификация всевозможных форм и типов мышечных сокращений приведена, в частности, в .

Если внешняя нагрузка меньше, чем напряжение сокращающейся мышцы, то мышца укорачивается и вызывает движение. Такой тип сокращения называют концентрическим или миометрическим. В лабораторных условиях при электрическом раздражении изолированной мышцы, ее укорочение происходит при постоянном напряжении, равном величине внешней нагрузки. Поэтому данный тип сокращения называют также изотоническим (изос - равный, тонус - напряжение). В начале изотонического сокращения увеличивается напряжение мышцы, а когда его величина сравняется с величиной внешней нагрузки, начинается укорочение мышцы.

Если внешняя нагрузка на мышцу больше, чем напряжение, развиваемое во время сокращения, мышца растягивается. Такой тип сокращения называют эксцентрическим или плиометрическим.

С помощью специальных устройств можно регулировать внешнюю нагрузку таким образом, что с ростом напряжения мышцы величина внешней нагрузки в такой же степени увеличивается, а при уменьшении мышечного напряжения - величина внешней нагрузки настолько же снижается. В данном случае при постоянной активации мышц движение осуществляется с постоянной скоростью. Такой тип сокращения мышц называется изокинетическим. Сокращения, при которых мышца изменяет свою длину (концентрические, эксцентрические, изокинетические), относятся к динамической форме сокращения.

Сокращение, при котором мышца развивает напряжение, но не изменяет своей длины, называется изометрическим (изос - равный, метр - длина). Изометрическое сокращение мышц относится к статической форме сокращения. Она реализуется в двух случаях. Во-первых, когда внешняя нагрузка равна напряжению, развиваемому мышцей при сокращении. И во-вторых, когда внешняя нагрузка превышает напряжение мышцы, но отсутствуют условия для растяжения мышцы под влиянием этой нагрузки. Примером второго случая может служить лабораторный эксперимент, в котором раздраженная с помощью электричества изолированная мышца пытается приподнять лежащий на столе груз, величина которого превосходит ее подъемную силу.

В реальных условиях деятельности мышц практически не встречается чисто изометрическое или изотоническое сокращение, т.к. при выполнении двигательных действий внешняя нагрузка на сокращающиеся мышцы не остается постоянной вследствие изменения механических условий их работы, т.е. изменения плеч сил и углов их приложения. Смешанную форму сокращения, при которой изменяется как длина, так и напряжение мышцы, называют ауксотоническои или анизотонической.

Из книги Супертренинг автора Ментцер Майк

Новая техника тренинга – статические сокращения Бодибилдер – не пауэрлифтер. Поднимая штангу, он не собирается побивать весовой рекорд. Его задача – запустить механизма роста, т.е. добиться максимального сокращения мышечных волокон. Чтобы росла масса, надо наращивать

Из книги Фитнес-спорт: учебник для студентов автора Шипилина Инесса Александровна

ТИПЫ ТЕЛОСЛОЖЕНИЯ ГЕНЕТИКА Часто приходится слышать, что у спортсмена хорошая генетика, поэтому у него хорошие шансы добиться успеха. Что же такое генетика? Когда говорят «генетика мышцы», – имеют в виду ее форму. А форму определяют два важнейших фактора: расположение

Из книги Входные ворота ушу автора Яоцзя Чэнь

1. Типы шагов В «длинном» и «южном кулаке» есть такие общие типы шагов как лошадиный, лукообразный, пустой шаг и шаг слуги, а есть такие отличающиеся моменты, как отдыхающий шаг, сидячий охват. Т-образный шаг в «длинном кулаке» и шаг стоя на колене в «южном

Из книги Учебник подводной охоты на задержке дыхания автора Барди Марко

Сердечные сокращения Все перемещение крови в системе кровоснабжения происходят благодаря особому свойству сердечной мышцы - ритмичному сокращению ее волокон.Побуждением для сердечных сокращений являются непроизвольные и полностью автономные нервные импульсы; они

Из книги Триатлон. Олимпийская дистанция автора Сысоев Игорь

Тренировка мышечного компонента Допустим, что вы уже достаточно развили функциональные способности ССС и КРС, можете долго работать на высоком пульсе, у вас хороший уровень ПАНО, а МПК вышел на предельный генетический уровень. Но чего-то не хватает. Часто бывает, что

Из книги Теория и методика подтягиваний (части 1-3) автора Кожуркин А. Н.

2.4 ХАРАКТЕРИСТИЧЕСКИЕ КРИВЫЕ МЫШЦ. 2.4.1 Взаимосвязь между нагрузкой и скоростью мышечного сокращения. Характеристическую зависимость «нагрузка - скорость» (рисунок 2.2) называют кривой Хилла в честь изучавшего её английского физиолога Хилла, исследовавшего сокращение

Из книги Формула-1. История главной автогонки мира и её руководителя Берни Экклстоуна автора Бауэр Том

2.5.2 Регуляция мышечного напряжения. Для регуляции мышечного напряжения используются три механизма: регуляция числа активных двигательных единиц данной мышцы, регуляция частоты подачи нервных импульсов, регуляция временно?й связи активности двигательных

Из книги Школа яхтенного рулевого автора Григорьев Николай Владимирович

7.2.2 Механизм мышечного сокращения. В соответствии с теорией скользящих нитей мышца сокращается в результате укорочения множества последовательно соединенных саркомеров в миофибриллах, при этом тонкие актиновые нити скользят вдоль толстых миозиновых, двигаясь между

Из книги Аюрведа и йога для женщин автора Варма Джульет

Из книги Рукопашный бой [Самоучитель] автора Захаров Евгений Николаевич

Типы парусных яхт В практике парусного спорта используются яхты самых различных видов и размеров. В зависимости от условий плавания в том или ином районе применяют большие или меньшие яхты той или иной конструкции. Тип яхты в первую очередь определяется ее назначением и

Из книги Всё о лошадях [Полное руководство по правильному уходу, кормлению, содержанию, выездке] автора Скрипник Игорь

Из книги Пробиотики и ферменты. Суперфуд XXI века автора Кайрос Наталия

Из книги Жизнь без боли в спине. Лечение сколиоза, остеопороза, остеохондроза, межпозвонковой грыжи без операции автора Григорьев Валентин Юрьевич

Типы рационов Ниже приведена краткая характеристика питательных веществ, входящих в состав готовых рационов, поступающих в продажу (табл.

Из книги Следствие ведут едоки автора Буренина Кира

Глава 6. Типы пищеварения Во время написания этой главы я неоднократно обращалась к справочной литературе, но, признаться, чем глубже вникала в суть проблемы, тем больше противоречий находила в описаниях пищеварительных процессов. Полагаю, что такое положение дел связано

Из книги автора

Упражнения для укрепления мышечного корсета позвоночника на ранних стадиях спондилеза При шейной локализации спондилеза как можно шире следует использовать изометрические упражнения, описанные в разделе лечения шейного остеохондроза. Не рекомендуется выполнять

Различают несколько форм и типов мышечных сокращений.

1. Динамическая форма мышечного сокращения. При таком типе сокращений изменяется длина мышцы, но не изменяется напряжение. Эта форма включает два типа:

а) Изотонический тип или концентрационный (мышца укорачивается, но не изменяет своего напряжения). Например, ходьба.

б) Эксцентрический тип. Если нагрузка на мышцу больше, чем ее напряжение, то мышца растягивается. Например, при опускании тяжелого предмета.

2 Статическая форма мышечного сокращения. Эта форма наблюдается при поддержании позы или преодолении силы земного притяжения.

Данная форма включает один тип мышечного сокращения – изометрический. При изометрическом сокращении мышца изменяет свое напряжение, но не изменяет длины.

3. Форма ауксотонического сокращения или смешанная.

Деление на формы и типы мышечных сокращений является условным т.к. все сокращения являются смешанными. Однако преобладает какой-то один тип.

Режимы сокращения мышц.

Характер или режим сокращения мышцы зависит от частоты импульсов, которые поступают от мотонейрона.

Выделяют одиночные и тетанические мышечные сокращения.

Если на мышцу подействовать одиночным импульсом, то происходит одиночное мышечное сокращение , в котором выделяют несколько фаз:

1. Латентный (скрытый) период – время после действия раздражителя до начала сокращения.

2. Фаза укорочения (при изотоническом сокращении) или фаза напряжения (при изометрическом сокращении).

3. Фаза расслабления.

Одиночное мышечное сокращение характеризуется не значительной утомляемостью, но при этом мышца не способна реализовать свои возможности.

Тетаническое мышечное сокращение. Если на мышечное волокно воздействуют два быстро следующих друг за другом импульса, то сокращения накладываются и возникает сильное сокращение.

Наложение двух следующих друг за другом импульсов называется суммацией.

Выделяют два вида суммации:

1. Если второй раздражитель поступает в момент, когда мышца начала расслабляться, то кривая имеет вершину отдельную от вершины первого сокращения. Этот вид суммации называется неполной.

2. Если второй раздражитель поступает в момент, когда сокращение мышцы еще не дошло до вершины т.е. мышца не начала расслабляться, то оба сокращения сливаются в единое целое. Этот вид суммации называется полной.

Длительное и сильное сокращения мышцы, под влиянием ритма импульсов с последующим расслаблением называется тетанусом. У человека тетанус можно получить при частоте 50-70 имп/сек.

Выделяют два вида тетануса:

1. Зубчатый. Возникает при малой частоте подачи импульсов (до 150 имп/cек).

2. Гладкий. Возникает при высоком ритме подачи импульсов (более 150 имп/cек).

При этом различают оптимальный и пессимальный ритмы работы мышцы.

Так, если частота подачи и сила импульсов вызывает максимальный сократительный эффект, то это оптимальный ритм работы. Оптимальный ритм работы формируется через фазу экзальтации (т.е. супернормальности).

Если частота подачи импульсов и сила раздражителя слишком велики, то это вызывает снижение силы сокращения. Такой ритм называется пессимальным. Этот ритм работы мышцы формируется через фазу абсолютной рефрактерности.

Выделяют три режимы мышечного сокращения:

    Изотонический;

    Изометрический;

    Смешанный (ауксометрический).

    Изотонический режим мышечного сокращения характеризуется преимущественным изменением длины мышечного волокна, без существенного изменения напряжения. Указанный режим мышечного сокращения наблюдается, например, при поднятии легких и средних по массе грузов.

    Изометрический режим мышечного сокращения характеризуется преимущественным изменением мышечного напряжения, без существенного изменения длины. Примером может служить изменения состояния мышц при попытке человека сдвинуть с места предмет большой массы (например, при попытке сдвинуть с места стену в комнате).

    Смешанный (ауксометрический) тип мышечного сокращения, наиболее реальный, наиболее часто встречающийся вариант. Содержит в себе компоненты первого и второго вариантов в разных соотношениях в зависимости от реальных условий окружающей среды.

Виды мышечного сокращения

Выделяют три виды мышечного сокращения:

    Одиночное мышечное сокращение;

    Тетаническое мышечное сокращение (тетанус);

    Тоническое мышечное сокращение.

Кроме того, тетаническое мышечное сокращение делят на зубчатый и гладкий тетанус.

    Одиночное мышечное сокращение возникает в условиях действия на мышцу пороговых или надпороговых электрических стимулов, межимпульсный интервал которых равен или больше длительности одиночного мышечного сокращения. В одиночном мышечном сокращении выделяют три временных отрезка: латентный период, фазу укорочения и фазу расслабления (см. рис. 3).

Рис. 3 Одиночное мышечное сокращение и его характеристики.

ЛП – латентный период, ФУ – фаза укорочения, ФР – фаза расслабле-ния

    Тетаническое мышечное сокращение (тетанус) возникает в условиях действия на скелетную мышцу порогового или надпорогового электрического раздражителя, межимпульсный интервал которого мень- ше длительности одиночного мышечного сокращения. В зависимости от длительности межстимульных интервалов электрического раздражителя при его воздействии может возникнуть либо зубчатый, либо гладкий тетанус. Если межимпульсный интервал электрического раздражителя меньше длительности одиночного мышечного сокращения, но больше или равен сумме латентного периода и фазы укорочения, возникает зубчатый тетанус. Указанное условие выполняется при повышении частоты импульсного электрического раздражителя в определенном диапазоне.

Если же длительность межимпульсного интервала электрического раздражителя меньше суммы латентного периода и фазы укорочения возникает гладкий тетанус. При этом амплитуда гладкого тетануса больше амплитуды и одиночного мышечного сокращения и зубчатого тетанического сокращения. При дальнейшем уменьшении межимпульсного интервала электрического раздражителя, а следовательно при увеличении частоты, амплитуда тетанических сокращений возрастает (см. рис. 4).

Рис. 4 Зависимость формы и амплитуды тетанических сокращений от частоты раздражителя. – начало действия раздражителя, - оконча-ние действия разражителя.

Однако, указанная закономерность не носит абсолютного характера: при определенном значении частоты вместо ожидаемого повышения амплитуды гладкого тетатнуса отмечается феномен ее снижения (см. рис. 5). Указанный феномен был впервые обнаружен Российским ученым Н.Е.Введенским и был назван пессимумом. В основе пессимальных явлений по мнению Н.Е.Введенского лежит механизм торможения.

Рис. 5. Зависимость амплитуды гладкого тетануса от частоты раздражителя. Обозначения те же, что и на рисунке 5.

Которые различаются клеточной и тканевой организацией, иннервацией и в определенной степени механизмами функционирования. В то же время в молекулярных механизмах мышечного сокращения между этими типами мышц есть много общего.

Скелетные мышцы

Скелетная мускулатура является активной частью опорно-двигательного аппарата. В результате сократительной деятельности поперечно-полосатых мышц осуществляются:

  • передвижение тела в пространстве;
  • перемещение частей тела относительно друг друга;
  • поддержание позы.

Кроме того, один из результатов мышечного сокращения — выработка тепла.

У человека, как и у всех позвоночных, волокна скелетных мышц обладают четырьмя важнейшими свойствами:

  • возбудимость — способность отвечать на раздражитель изменениями ионной проницаемости и мембранного потенциала;
  • проводимость - способность к проведению потенциала действия вдоль всего волокна;
  • сократимость — способность сокращаться или изменять напряжение при возбуждении;
  • эластичность - способность развивать напряжение при растягивании.

В естественных условиях возбуждение и сокращение мышц вызываются нервными импульсами, поступающими к мышечным волокнам из нервных центров. Чтобы вызвать возбуждение в эксперименте, применяют электрическую стимуляцию.

Непосредственное раздражение самой мышцы называется прямым раздражением; раздражение двигательного нерва, ведущее к сокращению иннервированной этим нервом мышцы (возбуждение нейромоторных единиц), — непрямым раздражением. Ввиду того что возбудимость мышечной ткани ниже, чем нервной, приложение электродов раздражающего тока непосредственно к мышце еще не обеспечивает прямого раздражения: ток, распространяясь по мышечной ткани, действует в первую очередь на находящиеся в ней окончания двигательных нервов и возбуждает их, что ведет к сокращению мышц.

Типы сокращения

Изотонический режим — сокращение, при котором мышца укорачивается без формирования напряжения. Такое сокращение возможно при пересечении или разрыве сухожилия или в эксперименте на изолированной (удаленной из организма) мышце.

Изометрический режим — сокращение, при котором напряжение мышцы возрастает, а длина практически не уменьшается. Такое сокращение наблюдается при попытке поднять непосильный груз.

Ауксотонический режим - сокращение, при котором длина мышцы изменяется по мере увеличения ее напряжения. Такой режим сокращений наблюдается при осуществлении трудовой деятельности человека. Если напряжение мышцы возрастает при ее укорочении, то такое сокращение называют концентрическим, а в случае увеличении напряжения мышцы при ее удлинении (например, при медленном опускании груза) - эксцентрическим сокращением.

Виды мышечных сокращений

Выделяют два вида мышечных сокращений: одиночное и тетаническое.

При раздражении мышцы одиночным стимулом возникает одиночное мышечное сокращение, в котором выделяют следующие три фазы:

  • фаза латентного периода — начинается от начала действия раздражителя и до начала укорочения;
  • фаза сокращения (фаза укорочения) — от начала сокращения до максимального значения;
  • фаза расслабления — от максимального сокращения до начальной длины.

Одиночное мышечное сокращение наблюдается при поступлении к мышце короткой серии нервных импульсов моторных нейронов. Его можно вызвать воздействием на мышцу очень коротким (около 1 мс) электрическим стимулом. Сокращение мышцы начинается через временной промежуток до 10 мс от начала воздействия раздражителя, который и называют латентным периодом (рис. 1). Затем развиваются укорочение (длительность около 30-50 мс) и расслабление (50-60 мс). На весь цикл одиночного мышечного сокращения затрачивается в среднем 0,1 с.

Длительность одиночного сокращения у разных мышц может сильно варьировать и зависит от функционального состояния мышцы. Скорость сокращения и особенно расслабления замедляется при развитии утомления мышцы. К быстрым мышцам, имеющим кратковременное одиночное сокращение, относятся наружные мышцы глазного яблока, век, среднего уха и др.

При сопоставлении динамики генерации потенциала действия на мембране мышечного волокна и его одиночного сокращения видно, что потенциал действия всегда возникает раньше и лишь затем начинает развиваться укорочение, которое продолжается и после окончания реполяризации мембраны. Вспомним, что длительность фазы деполяризации потенциала действия мышечного волокна составляет 3-5 мс. В течение этого промежутка времени мембрана волокна находится в состоянии абсолютной рефрактерности, за которой следует восстановление се возбудимости. Поскольку длительность укорочения составляет около 50 мс, то очевидно, что еще во время укорочения мембрана мышечного волокна должна восстанавливать возбудимость и будет способна отвечать на новое воздействие сокращением на фоне еще незавершенного. Следовательно, на фоне развивающегося сокращения в мышечных волокнах на их мембране можно вызвать новые циклы возбуждения и следующие за ними суммирующиеся сокращения. Такое суммирующееся сокращение получило название тетанического (тетанус). Его можно наблюдать в одиночном волокне и целой мышце. Однако механизм тетанического сокращения в естественных условиях в целой мышце имеет особенности.

Рис. 1. Временные соотношения одиночных циклов возбуждения и сокращения волокна скелетной мышцы: а — соотношение потенциала действия, выхода Са 2+ в саркоплазму и сокращения: 1 — латентный период; 2 — укорочение; 3 — расслабление; б — соотношение потенциала действия, возбудимости и сокращения

Тетанусом называют сокращение мышцы, возникающее в результате суммирования сокращений ее моторных единиц, вызванных поступлением к ним множества нервных импульсов от моторных нейронов, иннервирующих данную мышцу. Суммирование усилий, развиваемых при сокращении волокон множества двигательных единиц, способствует увеличению силы тетанического сокращения мышцы и влияет на длительность сокращения.

Различают зубчатый и гладкий тетанус. Для наблюдения в эксперименте зубчатого тетануса мышцы ее стимулируют импульсами электрического тока с такой частотой, чтобы каждый последующий стимул наносился после фазы укорочения, но еще до окончания расслабления. Гладкое тетаническое сокращение развивается при более частых раздражениях, когда последующие воздействия наносятся во время развития укорочения мышцы. Например, если фаза укорочения мышцы составляет 50 мс, фаза расслабления — 60 мс, то для получения зубчатого тетануса необходимо раздражать эту мышцу с частотой 9-19 Гц, для получения гладкого — с частотой не менее 20 Гц.

Для демонстрации различных видов тетануса обычно используют графическую регистрацию на кимографе сокращений изолированной икроножной мышцы лягушки. Пример такой кимограммы представлен на рис. 2.

Если сравнивать амплитуды и усилия, развиваемые при различных режимах сокращения мышцы, то они при одиночном сокращении минимальны, увеличиваются при зубчатом тетанусе и становятся максимальными при гладком тетаническом сокращении. Одной из причин такого возрастания амплитуды и силы сокращения является то, что увеличение частоты генерации ПД на мембране мышечных волокон сопровождается увеличением выхода и накоплением в саркоплазме мышечных волокон ионов Са 2+ , способствующего большей эффективности взаимодействия между сократительными белками.

Рис. 2. Зависимость амплитуды сокращения от частоты раздражения (сила и длительность стимулов неизменны)

При постепенном увеличении частоты раздражения нарастание силы и амплитуды сокращения мышцы идет лишь до определенного предела — оптимума ответной реакции. Частоту раздражения, вызывающую наибольший ответ мышцы, называют оптимальной. Дальнейшее увеличение частоты раздражения сопровождается уменьшением амплитуды и силы сокращения. Это явление называют пессимумом ответной реакции, а частоты раздражения, превышающие оптимальную величину — пессимальными. Явления оптимума и пессимума были открыты Н.Е. Введенским.

В естественных условиях частота и режим посылки моторными нейронами нервных импульсов к мышце обеспечивают асинхронное вовлечение в процесс сокращения большего или меньшего (в зависимости от числа активных мотонейронов) количества двигательных единиц мышцы и суммацию их сокращений. Сокращение целостной мышцы в организме но своему характеру близко к гладкотеганическому.

Для характеристики функциональной активности мышц оценивают показатели их тонуса и сокращения. Тонусом мышцы называют состояние длительного непрерывного напряжения, вызванное попеременным асинхронным сокращением ее моторных единиц. При этом видимое укорочение мышцы может отсутствовать из-за того, что в процесс сокращения вовлекаются не все, а лишь те двигательные единицы, свойства которых наилучшим образом приспособлены к поддержанию тонуса мышцы и силы их асинхронного сокращения недостаточно для укорочения мышцы. Сокращения таких единиц при переходе от расслабления к напряжению или при изменении степени напряжения называют тоническими. Кратковременные сокращения, сопровождаемые изменением силы и длины мышцы, называют физическими.

Механизм мышечного сокращения

Мышечное волокно является многоядерной структурой, окруженной мембраной и содержащей специализированный сократительный аппарат-миофибриллы (рис. 3). Кроме этого, важнейшими компонентами мышечного волокна являются митохондрии, системы продольных трубочек — саркоплазматический ретикулум и система поперечных трубочек - Т-система.

Рис. 3. Строение мышечного волокна

Функциональной единицей сократительного аппарата мышечной клетки является саркомер, из саркомеров состоит миофибрилла. Саркомеры отделяются друг от друга Z-пластинками (рис. 4). Саркомеры в миофибрилле расположены последовательно, поэтому сокращения capкомеров вызывают сокращение миофибриллы и общее укорочение мышечного волокна.

Рис. 4. Схема строения саркомера

Изучение структуры мышечных волокон в световом микроскопе позволило выявить их поперечную исчерченносгь, которая обусловлена особой организацией сократительных белков протофибрилл — актина и миозина. Актиновые филаменты представлены двойной нитью, закрученной в двойную спираль с шагом около 36,5 нм. Эти филаменты длиной 1 мкм и диаметром 6-8 нм, количество которых достигает около 2000, одним концом прикреплены к Z-пластинке. В продольных бороздках актиновой спирали располагаются нитевидные молекулы белка тропомиозина. С шагом, равным 40 нм, к молекуле тропомиозина прикреплена молекула другого белка - тропонина.

Тропонин и тропомиозин играют (см. рис. 3) важную роль в механизмах взаимодействия актина и миозина. В середине саркомера между нитями актина располагаются толстые нити миозина длиной около 1,6 мкм. В поляризационном микроскопе эта область видна в виде полоски темного цвета (вследствие двойного лучепреломления) - анизотропный А-диск. В центре его видна более светлая полоска H. В состоянии покоя в ней нет актиновых нитей. По обе стороны А- диска видны светлые изотропные полоски - I-диски , образованные нитями актина.

В состоянии покоя нити актина и миозина незначительно перекрывают друг друга таким образом, что общая длина саркомера составляет около 2,5 мкм. При электронной микроскопии в центре H -полоски обнаружена М-линия - структура, которая удерживает нити миозина.

При электронной микроскопии видно, что на боковых сторонах миозиновой нити обнаруживаются выступы, получившие название поперечных мостиков. Согласно современным представлениям, поперечный мостик состоит из головки и шейки. Головка приобретает выраженную АТФазную активность при связывании с актином. Шейка обладает эластическими свойствами и представляет собой шарнирное соединение, поэтому головка поперечного мостика может поворачиваться вокруг своей оси.

Использование современной техники позволило установить, что нанесение электрического раздражения на область Z -пластинки приводит к сокращению саркомера, при этом размер зоны диска А не изменяется, а величина полосок Н и I уменьшается. Эти наблюдения свидетельствовали о том, что длина миозиновых нитей не изменяется. Аналогичные результаты были получены при растяжении мышцы — собственная длина актиновых и миозиновых нитей не изменялась. В результате экспериментов выяснилось, что изменялась область взаимного перекрытия актиновых и миозиновых нитей. Эти факты позволили X. и А. Хаксли предложить теорию скольжения нитей для объяснения механизма мышечного сокращения. Согласно этой теории при сокращении происходит уменьшение размера саркомера вследствие активного перемещения тонких актиновых нитей относительно толстых миозиновых.

Рис. 5. А — схема организации саркоплазматического ретикулума, поперечных трубочек и миофибрилл. Б — схема анатомической структуры поперечных трубочек и саркоплазматического ретикулума в индивидуальном волокне скелетной мышцы. В — роль саркоплазматического ретикулума в механизме сокращения скелетной мышцы

В процессе сокращения мышечного волокна в нем происходят следующие преобразования:

электрохимическое преобразование:

  • генерация ПД;
  • распространение ПД по T-системе;
  • электрическая стимуляция зоны контакта T-системы и саркоплазматического ретикулума, активация ферментов, образование инозитолтрифосфата, повышение внутриклеточной концентрации ионов Са 2+ ;

хемомеханическое преобразование:

  • взаимодействие ионов Са 2+ с тропонином, изменение конфигурации тропомиозина, освобождение активных центров на актиновых филаментах;
  • взаимодействие миозиновой головки с актином, вращение головки и развитие эластической тяги;
  • скольжение нитей актина и миозина относительно друг друга, уменьшение размера саркомера, развитие напряжения или укорочение мышечного волокна.

Передача возбуждения с двигательного мотонейрона на мышечное волокно происходите помощью медиатора ацетилхолина (АХ). Взаимодействие АХ с холинорецептором концевой пластинки приводит к активации АХ-чувствительных каналов и появлению потенциала концевой пластинки, который может достигать 60 мВ. При этом область концевой пластинки становится источником раздражающего тока для мембраны мышечного волокна и на участках клеточной мембраны, прилегающих к концевой пластинке, возникает ПД, который распространяется в обе стороны со скоростью примерно 3-5 м/с при температуре 36 °С. Таким образом, генерация ПД является первым этапом мышечного сокращения.

Вторым этапом является распространение ПД внутрь мышечного волокна по поперечной системе трубочек, которая служит связующим звеном между поверхностной мембраной и сократительным аппаратом мышечного волокна. Г-система тесно контактирует с терминальными цистернами саркоплазматической сети двух соседних саркомеров. Электрическая стимуляция места контакта приводит к активации ферментов, расположенных в месте контакта, и образованию инозитолтрифосфата. Инозитолтрифосфат активирует кальциевые каналы мембран терминальных цистерн, что приводит к выходу ионов Са 2+ из цистерн и повышению внутриклеточной концентрации Са 2+ " с 10 -7 до 10 -5 . Совокупность процессов, приводящих к повышению внутриклеточной концентрации Са 2+ , составляет сущность третьего этапа мышечного сокращения. Таким образом, на первых этапах происходит преобразование электрического сигнала ПД в химический — повышение внутриклеточной концентрации Са 2+ т.е. электрохимическое преобразование (рис. 6).

При повышении внутриклеточной концентрации ионов Са 2+ происходит их связывание с тропонином, который изменяет конфигурацию тропомиозина. Последний смешается в желобок межу нитями актина; при этом на актиновых нитях открываются участки, с которыми могут взаимодействовать поперечные мостики миозина. Это смещение тропомиозина обусловлено изменением формации молекулы белка тропонина при связывании Са 2+ . Следовательно, участие ионов Са 2+ в механизме взаимодействия актина и миозина опосредовано через тропонин и тропомиозин. Таким образом, четвертым этапом электромеханического сопряжения является взаимодействие кальция с тропонином и смещение тропомиозина.

На пятом этапе электромеханического сопряжения происходит присоединение головки поперечного мостика миозина к мостикуактина — к первому из нескольких последовательно расположенных стабильных центров. При этом миозиновая головка поворачивается вокруг своей оси, поскольку имеет несколько активных центров, которые последовательно взаимодействуют с соответствующими центрами на актиновом филаменте. Вращение головки приводит к увеличению упругой эластической тяги шейки поперечного мостика и увеличению напряжения. В каждый конкретный момент в процессе развития сокращения одна часть головок поперечных мостиков находится в соединении с актиновым филаментом, другая свободна, т.е. существует последовательность их взаимодействия с актиновым филаментом. Это обеспечивает плавность процесса сокращения. На четвертом и пятом этапах происходит хемомеханическое преобразование.

Рис. 6. Электромеханические процессы в мышце

Последовательная реакция соединения и разъединения головок поперечных мостиков с актиновым филаментом приводит к скольжению тонких и толстых нитей относительно друг друга и уменьшению размеров саркомера и общей длины мышцы, что является шестым этапом. Совокупность описанных процессов составляет сущность теории скольжения нитей (рис. 7).

Первоначально полагали, что ионы Са 2+ служат кофактором АТФазной активности миозина. Дальнейшие исследования опровергли это предположение. У покоящейся мышцы актин и миозин практически не обладают АТФазной активностью. Присоединение головки миозина к актину приводит к тому, что головка приобретает АТФазную активность.

Рис. 7. Иллюстрация теории скользящих нитей:

А. а — мышца в покое: А. 6 — мышца при сокращении: Б. а. б — последовательное взаимодействие активных центров миозиновой головки с центрами на активной нити

Гидролиз АТФ в АТФазном центре головки миозина сопровождается изменением конформации последней и переводом ее в новое, высокоэнергетическое состояние. Повторное присоединение миозиновой головки к новому центру на актиновом филаменте вновь приводит к вращению головки, которое обеспечивается запасенной в ней энергией. В каждом цикле соединения и разъединения головки миозина с актином расщепляется одна молекула АТФ на каждый мостик. Быстрота вращения определяется скоростью расщепления АТФ. Очевидно, что быстрые фазические волокна потребляют значительно больше АТФ в единицу времени и сохраняют меньше химической энергии во время тонической нагрузки, чем медленные волокна. Таким образом, в процессе хемомеханического преобразования АТФ обеспечивает разъединение головки миозина и акгинового филамента и энергетику для дальнейшего взаимодействия головки миозина с другим участком актинового филамента. Эти реакции возможны при концентрации кальция выше 10 -6 М.

Описанные механизмы укорочения мышечного волокна позволяют предположить, что для расслабления в первую очередь необходимо понижение концентрации ионов Са 2+ . Экспериментально было доказано, что саркоплазматическая сеть имеет специальный механизм — кальциевый насос, который активно возвращает кальций в цистерны. Активация кальциевого насоса осуществляется неорганическим фосфатом, который образуется при гидролизе АТФ. а энергообеспечение работы кальциевого насоса — также за счет энергии, образующейся при гидролизе АТФ. Таким образом, АТФ является вторым важнейшим фактором, абсолютно необходимым для процесса расслабления. Некоторое время после смерти мышцы остаются мягкими вследствие прекращения тонического влияния мотонейронов. Затем концентрация АТФ снижается ниже критического уровня и возможность разъединения головки миозина с актиновым филаментом исчезает. Возникает явление трупного окоченения с выраженной ригидностью скелетных мышц.

Функциональное значение АТФ при сокращении скелетной мускулатуры
  • Гидролиз АТФ под действием миозина, в результате поперечные мостики получают энергию для развития тянущего усилия
  • Связывание АТФ с миозином, ведущее к отсоединению поперечных мостиков, прикрепленных в актину, что создает возможность повторения цикла их активности
  • Гидролиз АТФ (под действием Са 2+ -АТФазы) для активного транспорта ионов Са 2+ в латеральные цистерны саркоплазматического ретикулума, снижающий уровень цитоплазматического кальция до исходного уровня

Суммация сокращений и тетанус

Если в эксперименте на отдельное мышечное волокно или всю мышцу действуют два быстро следующих друг за другом сильных одиночных раздражения, то возникающие сокращения будут иметь большую амплитуду, чем максимальное сокращение при одиночном раздражении. Сократительные эффекты, вызванные первым и вторым раздражениями, как бы складываются. Это явление называется суммацией сокращений (рис. 8). Оно наблюдается как при прямом, так и непрямом раздражении мышцы.

Для возникновения суммации необходимо, чтобы интервал между раздражениями имел определенную длительность: он должен быть длиннее рефрактерного периода, в противном случае на второе раздражение не будет ответа, и короче всей длительности сократительного ответа, чтобы второе раздражение подействовало на мышцу раньше, чем она успеет расслабиться после первого раздражения. При этом возможны два варианта: если второе раздражение поступает, когда мышца уже начала расслабляться, то на миографической кривой вершина этого сокращения будет отделена от вершины первого западением (рис 8, Ж-Г); если же второе раздражение действует, когда первое еще не дошло до своей вершины, то второе сокращение полностью сливается с первым, образуя единую суммированную вершину (рис 8, А-В).

Рассмотрим суммацию в икроножной мышце лягушки. Продолжительность восходящей фазы ее сокращения примерно 0,05 с. Поэтому для воспроизведения на этой мышце первого типа суммации сокращений (неполная суммация) необходимо, чтобы интервал между первым и вторым раздражениями был больше 0,05 с, а для получения второго типа суммации (так называемая полная суммация) — меньше 0,05 с.

Рис. 8. Суммация мышечных сокращений 8 ответ на два стимула. Отметка времени 20 мс

Как при полной, так и при неполной суммации сокращений потенциалы действия не суммируются.

Тетанус мышцы

Если на отдельное мышечное волокно или на всю мышцу действуют ритмические раздражения с такой частотой, что их эффекты суммируются, наступает сильное и длительное сокращение мышцы, называемое тетаническим сокращением , или тетанусом.

Амплитуда его может быть в несколько раз больше величины максимального единичного сокращения. При относительно малой частоте раздражений наблюдается зубчатый тетанус , при большой частоте - гладкий тетанус (рис. 9). При тетанусе сократительные ответы мышцы суммированы, а электрические ее реакции — потенциалы действия — не суммируются (рис. 10) и их частота соответствует частоте ритмического раздражения, вызвавшего тетанус.

После прекращения тетанического раздражения волокна полностью расслабляются, их исходная длина восстанавливается лишь по истечении некоторого времени. Это явление называется послететанической, или остаточной, контрактурой.

Чем быстрее сокращаются и расслабляются волокна мышцы, тем чаще должны быть раздражения, чтобы вызвать тетанус.

Утомление мышцы

Утомлением называется временное понижение работоспособности клетки, органа или целого организма, наступающее в результате работы и исчезающее после отдыха.

Рис. 9. Тетанус изолированного мышечного волокна (по Ф.Н. Серкову):

а — зубчатый тетанус при частоте раздражения 18 Гц; 6 — гладкий тетанус при частоте раздражения 35 Гц; М — миограмма; Р — отметка раздражения; В — отметка времени 1 с

Рис. 10. Одновременная запись сокращения (а) и электрической активности (6) скелетной мышцы кошки при тетаническом раздражении нерва

Если длительно раздражать ритмическими электрическими стимулами изолированную мышцу, к которой подвешен небольшой груз, то амплитуда ее сокращений постепенно убывает до нуля. Регистрируемую при этом запись сокращений называют кривой утомления.

Понижение работоспособности изолированной мышцы при ее длительном раздражении обусловлено двумя основными причинами:

  • во время сокращения в мышце накапливаются продукты обмена веществ (фосфорная, молочная кислоты и др.), оказывающие угнетающее действие на работоспособность мышечных волокон. Часть этих продуктов, а также ионы калия диффундируют из волокон наружу в околоклеточное пространство и оказывают угнетающее влияние на способность возбудимой мембраны генерировать потенциалы действия. Если изолированную мышцу, помещенную в небольшой объем жидкости Рингера, длительно раздражая, довести до полного утомления, то достаточно только сменить омывающий ее раствор, чтобы восстановились сокращения мышцы;
  • постепенное истощение в мышце энергетических запасов. При длительной работе изолированной мышцы резко уменьшаются запасы гликогена, вследствие чего нарушается процесс ресинтеза АТФ и креатинфосфата, необходимый для осуществления сокращения.

И.М. Сеченов (1903) показал, что восстановление работоспособности утомленных мышц руки человека после длительной работы по подъему груза ускоряется, если в период отдыха производить работу другой рукой. Временное восстановление работоспособности мышц утомленной руки может быть достигнуто и при других видах двигательной активности, например при работе мышц нижних конечностей. В отличие от простого покоя такой отдых был назван И.М. Сеченовым активным. Он рассматривал эти факты как доказательство того, что утомление развивается прежде всего в нервных центрах.

Здрасьте, мои уважаемые читатели, почитатели и прочие хорошие и не очень личности!

Сегодня нас ждет архиважная и архинужная заметка научной или около того направленности. Говорить в ней мы будем про типы мышечных сокращений, какие они бывают, что собой представляют и как их использовать в своей повседневной тренировочной деятельности.

Итак, располагайтесь поудобней, начнем жестить.

Типы мышечных сокращений. Что, к чему и почему?

Если Вы еще не в курсе, то проект Азбука Бодибилдинга – это образовательный ресурс, и посему на нем периодически проскальзывают необычные статьи углубленной направленности, раскрывающие сущность различных накачательных (и смежных) процессов. В частности, к последним таким заметкам можно отнести: [почему люди полнеют?], [мотивация в бодибилдинге] и иже с ними. Так вот, в вопросах изменения собственного тела важно не просто бездумно качать железки и поднимать большие веса, важно понимать, что в этот конкретный момент происходит в мышцах, какой тип нагрузки к ним приложен и во что это в конечном итоге может вылиться. В общем, сегодня мы будем вкладывать в свою голову, дабы потом еще лучше прокачать свое тело. Собственно, давайте переходить ближе к сути.

Примечание:

Для более лучшего усвоения материала все дальнейшее повествование будет разбито на подглавы.

Сокращение мышц: как это происходит?

Каждый раз, когда Вы берете в руки снаряд (например, гантель) и начинаете выполнять упражнение (например, подъем гантели на бицепс), происходит процесс сокращения скелетных мышц. Мы в предыдущих заметках (в частности в этой, [связь мозг-мышцы]) уже рассматривали, как происходит сам процесс сокращения мускулатуры, поэтому, чтобы не повторяться, приведу только общую схему.

…и наглядную анимацию (кликните и запустите приложение нажав «play»).

Двигательный центр (motor unit) состоит из двигательного нейрона и определенного количества иннервируемых волокон. Мышечное сокращение является ответом мускульной единицы на потенциал действия его двигательного нейрона.

Всего существует 3 вида градуированных ответов мышц:

  • волновое суммирование (wave summation) – формируется за счет увеличения частоты стимула;
  • многоэлементное суммирование (multiple motor unit summation) – формируется за счет увеличения силы раздражителя (увеличение количества двигательных нейронов);
  • лестница (treppe) – реакция с определенной частотой/силой на постоянный стимул.

Говоря о мышцах, нельзя не упомянуть про мышечный тонус – явление при котором мускулы проявляют незначительное сокращение даже в состоянии покоя, сохраняя свою форму и способность ответить нагрузке в любой момент. Все это Вам не обязательно запоминать, просто это поможет лучше понять сущность протекающих процессов в мышцах при разных типах мышечных сокращений.

Какие cуществуют типы мышечных сокращений?

Знаете ли Вы, что для обеспечения лучшего роста мышц им необходимо давать разные типы нагрузки, но не в смысле веса отягощения или смены одного упражнения на другое, а по-разному воздействовать на характеристики мускулатуры. Вот о чем идет речь – статическое и динамическое сокращение скелетных мышц. Статическая и динамическая работа объединяют в себе пять типов мышечных сокращений, каждый из которых делится на две формы движения: концентрические и эксцентрические.

Пройдемся по каждому по порядку и начнем с…

Динамические сокращения (ДС)

Происходят во время движения или с использованием свободных весов — когда атлет поднимает свободный вес и противостоит силе тяжести. Наиболее распространенным видом ДС являются изотонические – те, в которых мышца изменяет свою длину, когда она сжимается в процессе движения. Изотонические сокращения (ИС) позволяют осуществлять людям (и животным) свою привычную деятельность, передвигаться. Выделяют два типа ИС:

  • концентрическое – наиболее распространенное и часто встречаемое в повседневной и спортивной деятельности. Подразумевают укорочение мышцы за счет ее сокращения (сжатия). Пример – сгибание руки в локтевом суставе, в результате чего происходит концентрическое сокращение мышцы двуглавой мышцы плеча, бицепса. Часто это сокращение называют позитивной фазой подъема снаряда;
  • эксцентрическое – полная противоположность концентрическим. Возникает, когда мышца удлиняется во время сокращения. Встречается значительно реже в накачательной практике и предполагает контроль или замедление движения по инициативе эксцентрического агониста мышцы. Пример – при ударе по мячу ногой, квадрицепс сокращается концентрически, а мышцы задней поверхности бедра сокращаются эксцентрически. Нижняя фаза (разгибание/опускание) при подъеме гантели на бицепс или в подтягиваниях также являются примерами ЭС. Этот тип создает большую нагрузку на мышцу, увеличивая вероятность получения травм. Часто это сокращение называют негативной фазой опускания снаряда.

К особенностям эксцентрических сокращений можно отнести большую выработку силы – т.е. атлет может снизить (в управляемом режиме) вес, значительно превосходящий по “тоннажу” его рабочий подъемный вес. Большая сила обеспечивается за счет большего включения волокон второго типа (быстрые мышечные волокна). Таким образом упражнение концентрированный подъем гантели на бицепс, а точнее его негативная фаза, позволяет активнее включить в работу белые волокна. Такая особенность часто используется продвинутыми атлетами для улучшения взрывной силы, например, в жиме лежа.

Примечание:

Мышцы становятся на 10% сильнее во время выполнения эксцентрических движений, чем во время концентрических сокращений.

Чаще всего в подобных случаях берется гантель, отстоящая от привычного веса (допустим 15 кг) на 3-7 кг. Позитивная фаза осуществляется путем закидывания гантели наверх с помощью партнера или другой руки, а негативная – занимает около 4 сек (против 2 сек подъема). Такие эксцентрические тренировки иногда очень полезны, т.к. создают обширные повреждения мышечных волокон, что приводит к увеличению синтеза белка, впоследствии явлению суперкомпенсации и лучшей мышечной гипертрофии. Минус их — в высокой вероятности травм (если делать все без головы), поэтому новичкам лучше не заморачиваться.

Статические сокращения (СС)

Само название говорит за себя, статика, т.е. нет движения, не происходит изменения в удлинении/укорочении. Такие сокращения называются изометрическими. Пример – удержание объекта перед собой (сумки в магазине), когда вес тянет вниз, но мышцы сжимаются, чтобы удержать предмет на нужном уровне. Также отличным примером изометрического сокращения мышц, является зависание в какой-то точке траектории на неопределенное время. Например, при выполнении приседаний в середине траектории (наполовину вверх) квадрицепсы сокращаются изометрически. Величина силы, производимой во время изометрического сокращения, зависит от длины мышцы в точке сжатия. Каждая мышца имеет оптимальную длину, при которой наблюдается максимальная изометрическая сила. Результирующая сила изометрических сокращений превышает силу, продуцируемую динамическими сокращениями.

Для наглядности приведу примеры, демонстрирующие разные типы мышечных сокращений (кликабельно).

Это мы рассмотрели основные типы сокращений, которые наиболее распространены в тренажерной практике, однако, если взглянуть на первоначальную классификацию, их несколько больше. Давайте также их разберем, чтобы Вы хотя бы имели о них представление и могли удивить своих несведущих коллег по залу:).

Изокинетические сокращения (Isokinetic)

В изокинетических сокращениях (Iso=постоянно, kinetic=движение) нервно-мышечные системы могут работать при постоянной скорости на каждом этапе движения против заданного сопротивления. Это позволяет работающим мышцам и мышечным группам создать высокую степень напряженности на всех участках диапазона движения. Данный тип сокращений эффективен для равномерного развития силы мускулатуры при любых углах движения. Это динамические сокращения, и при них изменяется длина мышцы. Определяющей характеристикой ИС мышц является то, что они приводят к движениям с постоянной скоростью.

В тренажерном зале подобный тип сокращений используется на специальных изокенетических тренажерах-динамометрах Cybex , Nautilus и прочие. Плавание и гребля – виды активности с постоянной скоростью, также являются изокинетической формой сокращений.

Преимущества изокинетических сокращений заключаются в следующем:

  • приводят к улучшению нервно-мышечной координации, увеличивая число вовлекаемых в работу волокон;
  • приводят к увеличению мышечной силы всей мышцы на всем диапазоне движения;
  • управление скоростью движения позволяет значительно снизить вероятность получения травм, что особенно важно в послеоперационные периоды и периоды реабилитации;
  • приводят к улучшению общей выносливости и сердечной функции.

Оксотонические сокращения (Auxotonic)

Это динамический тип сокращений повышенного натяжения (роста напряженности). Когда спортсмен сгибает руки, держа штангу, ее масса очевидно не меняется в течение всего диапазона движения. Сила, необходимая для выполнения этого движения, не является постоянной, она зависит от телосложения, рычагов атлета, угла положения конечностей и скорости движения.

Плиоцентрические сокращения (Plyocentric)

Представляет собой гибрид (совмещение), мышца выполняет изотоническое сжатие из растянутого положения. Активность, которая использует данный тип мышечных сокращений по полной, называется плиометрический тренинг или плиометрика. Данный тип активности хорошо совокупно развивает силу и мощность атлета, и часто рекомендуется в качестве основы женских тренировок.

Итак, чтобы окончательно устаканить все вышесказанное, приведу сборную картину-презентацию (которую я нашел в архивах одного зарубежного спортивно-медицинского университета) по типам сокращений. Вот, собственно, и она (кликабельно).

Влияние типов сокращений на длину мышц

Результатом изотонических сокращений является изменение длины мышцы (при постоянной силе). Концентрические ИС – укорачивают мышцу по мере перемещения нагрузки, эксцентрические – удлиняют мышцу по мере ее сопротивления нагрузке. Результатом изометрических сокращений является увеличение мышечного напряжения, однако ни удлинения, ни укорочения мышцы не происходит.

В наглядном виде все это безобразие выглядит следующим образом.

Тип мышечных сокращений во время бега

С активностью по типу сокращений мы разобрались, однако остался нерассмотренным такой вопрос: какой тип сокращений имеет место быть в беге. Вообще, побегушки – это универсальный инструмент, который охватывает сразу несколько типов сокращений, в частности: изотонический концентрический и эксцентрический. Сокращения происходят в рамках медленно и быстросокращающихся мышечных волокон.

Во время бега, подъем бедра и сгибание колена приводит к концентрическим изотоническим сокращениями сгибателей бедра и подколенного сухожилия (мышцы задней поверхности бедра). Когда Вы выпрямляете ногу, чтобы оттолкнуться от земли и сделать продвигающее движение, Ваши разгибатели бедра (подколенные сухожилия, большая ягодичная мышца) и колена (квадрицепсы) выполняют концентрические изотонические сокращения.

Эксцентрические изотонические сокращения особенно включаются при даунхилле (скоростном спуске). Во время обычного бега разгибатели колена и квадрицепсы сокращаются для выпрямления ноги. Когда происходит бег с горы, квадрицепсы сокращаются эксцентрически. Кроме того, передняя большеберцовая мышца также сокращается эксцентрически, контролируя нисходящее движение Вашей ноги после того, как пятка коснется грунта. Что касается вовлечения в работу разных типов волокон во время бега, то побегушки в относительно спокойном темпе (бег трусцой) использует для своей мышечной деятельности, преимущественно, медленносокращающиеся волокна. Увеличение скорости позволяет больше вовлекать быстросокращающиеся мышечные волокна.

Что дают базовые упражнения?

На самом деле, знания о типах мышечных сокращений еще сильнее должны склонить атлетов (особенно начинающих) в сторону выполнения базы, и вот почему.

Многие скелетные мышцы сокращаются изометрически в целях стабилизации и защиты активных суставов во время движения. В то время как при выполнении приседаний со штангой четырехглавая мышца бедра сокращается концентрически (во время восходящей фазы) и эксцентрически (в нисходящей фазе), многие из более глубоких мышц бедра сокращаются изометрически для стабилизации тазобедренного сустава во время движения.

Таким образом, работая с базовыми упражнениями, можно разом прогнать мышечные группы по нескольким типам сокращений. По факту это положительно скажется на их объемно-силовых характеристикам и даст лучший стимул к росту.

Ну вот, пожалуй, и всё на сегодня, все темы раскрыты, вопросы рассмотрены дети накормлены, значит пора закругляться.

Послесловие

Подошла к концу очередная, фиг знает какая, по счету 🙂 заметка, в ней мы говорили про типы мышечных сокращений. Кто-то может сказать, что она не практическая — возможно, но теория и понимание всех накачательных процессов также очень важны в деле построения форменного тела, поэтому впитываем!

На сим все, разрешите откланяться, до новых встреч!

PS. Друзья, а Вы используете эту информацию в своих тренировках, или ничего о ней не знали до сего момента?

PPS. Помог проект? Тогда оставьте ссылку на него в статусе своей социальной сети - плюс 100 очков к карме, гарантированно 🙂 .


Top